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LETTER TO THE EDITOR 

Mapping correlated Gaussian patterns in a perceptron 
J F Fontanarit and R Meir 
Division of Chemistry, Mail Code 164-30 CH, California Institute of Technology, Pasadena, 
CA 91125, USA 

Received 10 May 1989, in final form 19 June 1989 

Abstract. We study the performance of a single-layer perceptron in realising a binary 
mapping of Gaussian input patterns. By introducing non-trivial correlations among the 
patterns, we generate a family of mappings including easier ones where similar inputs are 
mapped into the same output, and more difficult ones where similar inputs are mapped 
into different classes. The difficulty of the problem is gauged by the storage capacity of 
the network, which is higher for the easier problems. 

The use of statistical mechanics techniques in the analysis of feedback neural networks 
has led to a deep understanding of the equilibrium properties of these systems (Amit 
et a1 1987). Feedback neural networks, e.g. the Hopfield-Little model (Hopfield 1982, 
Little 1974), have a non-trivial dynamics which possesses a huge number of attractors. 
Part of these attractors can be imprinted in the network through a learning procedure 
which specifies the strengths of the couplings between the neurons, thus allowing the 
network to be used as an associative memory (Hopfield 1982). On the other hand, 
single-layer feedforward neural networks, e.g. Rosenblatt’s perceptron (Rosenblatt 
1962), have a rather dull dynamics but a very rich learning process which had been 
fully studied in the 1960s through rigorous mathematical analysis, simulations on 
digital computers and by constructing an actual machine (Block 1962, Minsky and 
Papert 1969). 

Recently Gardner (1988) and Gardner and Derrida (1988) have successfully 
rederived some of the results concerning the maximum storage capacity of the percep- 
tron in the framework of the equilibrium statistical mechanics (see also Opper (1988, 
1989) for a more recent contribution). The architecture of the perceptron considered 
in those studies is shown in figure 1. The input layer consists of N neurons {ti = *l, i = 
1, .  . . , N } ,  each one connected to the output neuron S = *1 through the couplings J i .  

Output 
neuron 

Figure 1. The architecture of a single-layer perceptron consisting of N input neurons 6,. 
each one connected to the output neuron S through the couplings J , .  

f On leave of absence from Instituto de Fisica e Quimica de Sao Carlos, Universidade de Sao Paulo, 13560 
Sao Carlos SP, Brazil. 
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Given the states of the neurons in the input layer and the coupling strengths, the state 
of the output neuron is given by 

The perceptron's task is to learn the mapping between p input patterns {e?,  i = 
1 , .  . . , N ;  p = 1 , .  . . , p }  and p output states { S p ,  p = 1,. . . , p } .  To achieve this, there 
must exist a vector J = (JI , J2, . . . , J N )  such that the p equations 

p = 1 , .  . . , p 

are simultaneously satisfied. If such a vector does exist, then the perceptron learning 
algorithm (Rosenblatt 1962) is guaranteed to converge. 

The feasibility of a mapping by a perceptron depends strongly on the statistical 
properties of the patterns (Minsky and Papert 1969) as well as on the number of 
patterns (Cover 1965). For random input patterns and large N, Gardner (1988) has 
found that the maximum number of patterns that can be correctly mapped into their 
respective outputs is 2N, a result first derived by Cover (1965). Correlations among 
the patterns were introduced by considering statistically independent biased patterns 

(3)  

(4) 

(S")  = (5P) = m 

(67 6;) = m2 + (1 - m2)6,,6, 

where m E [0,1]. These correlations increase the maximum storage capacity of the 
perceptron (a,) defined as the ratio between the maximum number of patterns correctly 
mapped and the number of input neurons N (Gardner 1988). However, this formula- 
tion includes only mappings which associate similar input patterns to the same output. 
The more interesting mappings where similar inputs can be associated with different 
outputs cannot be studied in the context of biased patterns. 

In order to study a more general mapping, we notice that the terms which contain 
the information about the statistical properties of the patterns in (2) have the form 
57 = S " t 7 .  In this letter we consider mappings where g, = (l,', l ; ,  . . . , l p )  are dis- 
tributed according to 

where the correlation matrix #I is given by 

#I , ,= (5?5,~)= [E+( l -P)S, , ] .  

With this choice of C$ one can show that P ( & )  exists only if 1 + ( p  - 1 ) E >  0, which 
guarantees that the determinant in ( 5 )  is positive. We assume that different sites are 
uncorrelated; the only correlations we consider are those between different patterns. 
Moreover, we also assume that the outputs S" = *l  are chosen at random. Actually 
we are making a Gaussian or mean-spherical approximation, ((ty)2) = 1,  of the Ising 
spins of the original model. Nevertheless, since most of the real-world applications 
of the perceptrons involve mappings of continuous variables into one of the two classes 
represented by the output neuron, this Gaussian approximation is attractive by itself. 
The parameter c' which appears in (6) is defined as 

P = (S"S"5f 51") p # v. (7) 
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Hence c'>O (c'<O) corresponds to mappings which lead similar inputs to equal 
(different) outputs. For c'= 0 one recovers the random mapping. It is well known that 
the E < 0 mappings are difficult problems for the perceptrons. 

Next we follow Gardner (1988) in calculating the fraction of the phase space of 
the vectors J which satisfy (2), 

where O(x)= 1 for x>O and 0 otherwise. The parameter k a O  ensures that noisy 
versions of the input patterns are mapped into the same class as the non-corrupted 
patterns. The spherical constraint J 2  = N defines the norm of the vectors J and 

I 

05 

X =  J-05 

dJi6 (e Jf-  N (9) 

is the volume of the J phase space. 
In the thermodynamic limit the sensible physical quantity is (1/ N)(ln V) which, 

as usual, is calculated through the often claimed unreliable, but nevertheless popular, 
replica trick 

(V")-1 
(In V) = lim -. 

n-o n 

In the following we assume that the number of input patterns ( p )  is proportional to 
N, p = (YN. Introducing the integral representation of the theta function 

for each pattern p and each replica p, and performing the averages over the Gaussian 
5: 

(12) (exp [ iN-1/2 7 F P P F ] )  [ 
N p n  

x,Ji 5, = exp -- x,'x:J'J,"(Cr 4';) 2 N  ij p v  p u  

one can write (V")  as 

with qpu and r,, defined by 
* N  
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and, in order to obtain a sensible thermodynamic limit, we have made the rescaling 
E = c / p .  In the limit N + 0;) the integrals in (13) may be readily calculated by steepest- 
descent integration. Assuming that the saddle point is replica symmetric, 

qPa=q F,,, = F P < V  

r, = r R, = R E, = E 

the integrations in (15) and (16) are easily performed, so that we finally obtain 

aR2 1 1 q  
2 4 1 - q )  2 2 1 - q  

+- In( 1 - q )  +- - 1 
-(In N V) = a I-: Dt In( erfc(A)) - 

where 

d t  
Dt=- 

m 

and we have eliminated the saddle-point parameters E, F and r since they are trivially 
related to q and R, which are then obtained by solving the saddle-point equations 

Since q, given by (17), is the inner product of two different vectors which solve (2), 
we expect that at a = a, (where V+O) q tends to 1 (Gardner 1988). Hence taking the 
limit q +  1 in (25) and (26), we obtain 

2 

with I? = R - k. Fixing c and k, we can solve (27) for d and then use this result in 
(28) to obtain a,. Figure 2 shows a, as a function of c for several values of k. For 
large, positive c one finds a,= c/2 in agreement with the fact that the perceptron 
performs well on mappings leading similar inputs to similar outputs. For small c one 
finds 

8k 4c 
2-- k<c 1 

k >> 1 

recovering Gardner’s resylts for c = 0. As c + -1, I? diverges to -a and for c < -1  
there is no real value of R which satisfies (27), since the determinant of the correlation 
matrix appearing in ( 5 )  becomes negative. 
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Figure 2. The maximum storage capacity a, as a function of the correlation parameter c 
for k = 0, 1.5, 1.7,1.8,2. Larger values of k increase the robustness of the perceptron to 
noisy effects in the input patterns. 

The mapping with the statistical properties we described can be easily obtained by 
first generating the si according to the probability distribution given in ( 5 ) .  The outputs 
{Y = f l }  are chosen randomly with equal probability. Knowing (r and Sp, the input 
patterns are given by 67 = ( Y S ’  for every p and i. This procedure implies that the 
input patterns are not independent of the output,which is perhaps a more realistic 
assumption than the commonly assumed independence. Finally we remark that the 
replica symmetric ansatz for the saddle-point parameters proved to be reliable in the 
study of the random mapping, c = O  (Gardner 1988), and we believe this result also 
holds for non-zero c. 

We have also extended Gardner’s calculations (for random mappings) to the case 
where all the connections are positive (or negative). We find in this case that the 
storage capacity decreases from 2N to N. This result may be of interest for hardware 
implementations of the perceptron. Another result we have obtained is that the 
maximum number of patterns that can be stored in a perceptron with interactions of 
order x is p m a x = a c N X / x !  where a , = 2  ( ~ 2 2 )  independent of x, in contrast to the 
results of Gardner (1987) for the Hopfield model. 

Summarising, we have studied the performance of a single-layer perceptron in 
realising the mapping of random, Gaussian distributed, input patterns into one of the 
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two classes represented by the state of the output neuron. By introducing non-trivial 
correlations among the patterns we were able to study a family of mappings including 
easier ones where similar inputs are mapped in the same class and more difficult ones 
where similar inputs are mapped into different classes. The difficulty of the problem 
is gauged by the storage capacity of the network, which is higher for the easier problems. 

We thank the referee for pointing out a flaw in the original version of the manuscript. 
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of Naval Research. JFF is partly supported by a CNPq (Brazil) fellowship and RM 
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